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Abstract—In this two-part paper, the problem of channel
estimation in Ultra Wide-Band (UWB) systems is investigated.
Due to the large transmission bandwidth, the channel has been
traditionally modeled as sparse. However, some propagation
phenomena, e.g., scattering from rough surfaces and frequency
distortion, are better modeled by a diffuse channel. Herein, a
novel Hybrid Sparse/Diffuse (HSD) channel model is proposed.
Tailored to the HSD model, channel estimators are designed for
different scenarios that differ in the amount of side information
available at the receiver. An Expectation-Maximization algorithm
to estimate the power delay profile of the diffuse component
is also designed. The proposed methods are compared to un-
structured and purely sparse estimators. The numerical results
show that the HSD estimation schemes considerably improve the
estimation accuracy and the bit error rate performance over
conventional channel estimators. In Part II, the new channel
estimators are evaluated with more realistic geometry-based
channel emulators. The numerical results show that, even when
the channel is generated in this manner, the new estimation
strategies achieve high performance. Moreover, a Mean-Squared
Error analysis of the proposed estimators is performed, in the
high and low Signal to Noise Ratio regimes, thus quantifying, in
closed form, the achievable performance gains.

Index Terms—Ultra Wideband, Bayesian estimation, channel
estimation, channel modeling, sparse approximations

I. INTRODUCTION

Ultra Wide-Band (UWB) signaling had been originally
proposed as a technology for indoor mobile and multiple-
access communications [1]–[3]. Due to its significant band-
width, UWB offers high precision localization [4], robustness
against multipath fading [5] and immunity to narrow-band
interference [6], thus representing a compelling solution for
applications such as short-range, high-speed broadband access
[7], Wireless Body Area Networks (WBANs) [8], covert
communication links, through-wall imaging, high-resolution
ground-penetrating radar and asset tracking [9]–[11]. However,
the performance of coherent UWB transceivers relies on the
availability of accurate channel estimates. Thus, it is important
to design channel estimation strategies that exploit the struc-
tural and statistical properties of UWB propagation to achieve
the best estimation accuracy.
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The significant transmission bandwidth of UWB systems
enables a fine-grained delay resolution at the receiver, of
the order of 1 ns. In many environments, only some of
the resolvable delay bins carry significant multipath energy,
yielding a sparse channel structure [10], [12]. For this reason,
UWB channel estimation strategies based on compressive
sensing and sparse approximation techniques [13]–[16] have
been proposed in the literature, and they have been shown
to outperform conventional unstructured estimators [17], [18].
Also, localization techniques that exploit the information about
the specular multipath structure of the UWB channel have been
proposed (see, e.g., [19], [20]).

However, recent propagation studies suggest that, for some
environments, such as indoor, WBANs and vehicular sce-
narios, diffuse (dense) components of the impulse response
arise. These are caused by propagation processes such as
diffuse scattering [21], or unresolvable MultiPath Components
(MPCs). Moreover, UWB channels exhibit a significant fre-
quency dispersion [22] due to the large transmission bandwidth
employed. While irrelevant for conventional narrow-band sys-
tems, this effect results in a pulse broadening and spreading
of the MPC energy over multiple resolvable delay bins. These
propagation mechanisms are not properly modeled by a purely
sparse channel.

Recent work explores these effects. In [23], a geometry-
based stochastic UWB model is proposed, consisting of a
statistical model for the diffuse component. The model de-
veloped in [24] combines a geometric approach to model the
resolvable MPCs, and a stochastic approach to model the
diffuse tail associated with each MPC. In [21], the spatial
structure of the diffuse MPCs is investigated, and its pa-
rameters are extracted from the measurements. In [25], the
impact of diffuse scattering on the characteristics of vehicular
propagation channels in highway environments is evaluated,
and the Doppler frequency-delay characteristics of diffuse
components are analyzed. In [26], a low-complexity model
of diffuse scattering is proposed for vehicular radio channels.
While these prior models were targeted towards performance
assessment, herein we develop a simplified UWB channel
model suitable for channel estimation purposes and estimator
analysis.

Exploitation of structure in channel models can lead to
estimation strategies with strong performance, in [27], a Max-
imum Likelihood (ML) estimator is designed which exploits
the clustered structure of the UWB channel. In [28], a joint
channel estimation and decoding technique for Bit-Interleaved
Coded Orthogonal Frequency Division Multiplexing is de-



2

signed, based on a two-state Gaussian mixture prior to model
the sparse/diffuse structure of the channel, and on an hidden
Markov prior to model clustering among the large taps.
Therein, more structure is assumed, e.g., clustering of the
taps, and further the scheme is semi-blind. In [29], an ML
framework is developed for parameter estimation in multi-
dimensional channel sounding. Therein, the channel comprises
a deterministic component, resulting from specular reflection,
and a stochastic component modeling diffuse scattering.

Our contributions are as follows: in Part I, based on the
analysis of the propagation mechanisms peculiar to UWB
systems, we present a novel Hybrid Sparse/Diffuse (HSD)
UWB channel model [30]. In particular, we propose statistical
models for the sparse and diffuse components. We identify
three physically motivated scenarios that differ in the amount
of side information available at the receiver (e.g., channel spar-
sity level, Power Delay Profile (PDP) of the diffuse or sparse
component). For each scenario, Bayesian channel estimators
are derived. In particular, we propose the Generalized MMSE
(GMMSE) and the Generalized Thresholding (GThres) esti-
mators, for the scenario where the statistics of the specular
coefficients are unknown. We also design an Expectation-
Maximization (EM) algorithm for the PDP estimation of the
diffuse component, which exploits the structure of the PDP
over the channel delay dimension to enhance the estimation
accuracy.

The proposed algorithms are compared to unconstrained
estimators, which do not exploit the structure of the UWB
channel, and conventional sparse estimators, which, on the
other hand, ignore the diffuse component of the channel. It is
shown, by numerical results, that the new channel estimation
methods considerably improve the Mean-Squared Error (MSE)
accuracy and the Bit Error Rate (BER) performance, thus
suggesting the importance of a proper model for the UWB
channel. Specifically, a purely sparse estimator, by ignoring the
diffuse component, is not able to capture important phenomena
in UWB, e.g., pulse distortion [31] and diffuse scattering [22],
thus failing to accurately estimate the channel. Moreover, it is
shown that it is beneficial to be conservative in the estimation
of the sparse component of the channel, by assuming that the
sparse component is sparser than it actually is.

In Part II of this paper [32], we present an asymptotic
MSE analysis of the GMMSE and the GThres estimators,
in the regions of high and low Signal to Noise Ratios (SNR).
Moreover, we validate the simplified HSD channel model and
the channel estimation strategies proposed in Part I, based on
a realistic UWB channel model developed in [24]. We argue
that the HSD model, despite its simplicity, can effectively
capture important UWB propagation mechanisms, such as fine
delay resolution, scattering from rough surfaces and frequency
dispersion. Moreover, due to its hybrid structure, the HSD
model is robust and covers a wide range of practical scenarios,
where the channel exhibits either a sparse, diffuse or hybrid
nature.

Part I of this paper is organized as follows: in Section II, we
overview the UWB propagation mechanisms. In Section III,
we present the system model and the HSD channel model.
In Section IV, we derive channel estimation strategies for the

HSD channel. In Section V, we present an EM algorithm for
the PDP estimation of the diffuse component. In Section VI,
we provide simulation results and we compare the perfor-
mance of the estimators. Finally, Section VII concludes the
paper.

Notation: We use lower-case bold letters for column vectors
(a), and upper-case bold letters for matrices (A). The scalar
ak (or a(k)) denotes the kth entry of vector a, and Ak,j (or
A(k, j)) denotes the (k, j)th entry of matrix A. A positive
definite (positive semi-definite) matrix A is denoted by A � 0
(A � 0). The transpose, complex conjugate of A is denoted
by A∗. We define the square root of A � 0 with eigenvalue
decomposition A = UDU∗ as

√
A = U

√
DU∗. The

K × K unit matrix is defined as IK . The vector a � b is
the component-wise (Schur) product of vectors a and b. The
indicator function is given by I (·). We use p(·) to indicate
a continuous or discrete probability distribution, and Pr (·)
to indicate the probability of an event. The expectation of
random variable x, conditioned on y, is denoted by E [x|y].
The Gaussian distribution with mean m and covariance Σ
is written as N (m,Σ), whereas the circularly symmetric
complex Gaussian distribution is denoted by CN (m,Σ);1 the
Bernoulli distribution with parameter q is denoted by B(q).

II. UWB CHANNEL PROPAGATION AND MODELING
OVERVIEW

In this section, we overview the state of the art of UWB
channel propagation and modeling. The aim is to determine
an appropriate UWB channel model, which captures the main
UWB propagation mechanisms. Neglecting pulse distortion
[31] for simplicity, a time-varying channel in the continuous
time can be represented as [33]

h(τ, t) =
∑
l

al(t)δ(τ − τl(t)), (1)

where δ (·) is the Kronecker delta function, t is the time
dimension and τ is the channel delay. The sum is over the
MPCs, with time-varying amplitude al(t) and delay τl(t). If
we consider a UWB system with center frequency f0 and
transmission bandwidth W , the discrete baseband time-varying
impulse response of the channel is given by

hbb(n, t) =
∑
l

al(t)e
−i2πf0τl(t)sinc (n−Wτl(t)) , (2)

where sinc(x) = sin(πx)
πx is the sinc function, and n ∈ Z

is the discrete channel delay. Due to the large transmission
bandwidth of UWB systems, MPCs arising from reflections
and scattering in the environment spaced apart (in the delay
domain) by more than 1

W , which is typically of the order
of a fraction of a ns, can be resolved at the receiver. Then,
by neglecting leakage effects due to the sampling of the sinc

1For a vector x = xR + ixI ∼ CN (0,Σ), where xR = Re(x),
xI = Im(x) and i =

√
−1, we define the covariance matrices of

its real and imaginary parts as E[xRx∗
R] = E[xIx∗

I ] =
Re(Σ)

2
and

E[xIx∗
R] = −E[xRx∗

I ] =
Im(Σ)

2
.
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function off its peak, (2) is commonly approximated by the
following sparse discrete baseband representation:

hbb(n, t) '
∑
l

al(t)e
−i2πf0τl(t)δ (n− rd (Wτl(t))) , (3)

where rd(x) returns the closest integer to x.
However, in many practical scenarios of interest (e.g., indoor

environments), diffuse components, that cannot be described
by the above model, arise. These are created mainly by the
following phenomena: a large number of unresolved paths,
diffuse scattering [22], pulse distortion resulting from the fre-
quency dependence of the gain and efficiency of the antennas
and of the dielectric or conductive materials, and diffraction
effects [31]. In [23], the following frequency response has been
proposed, modeling the contribution from all these effects:

HUWB(f) =

(
SLOS(f) +

∑
k

Sk(f) +D(f)

)
f−m

F
, (4)

where f is frequency. In particular, we recognize in SLOS(f)
and

∑
k Sk(f) the contributions from the line of sight and

the resolvable MPCs, respectively, i.e., the MPCs whose inter-
arrival time is larger than 1

W , giving rise to a sparse component
in the time domain. The term D(f) represents the diffuse com-
ponent due to multipath interference, and is associated with
the non-resolvable MPCs. Finally, f

−m

F models the frequency
distortion of the channel, where F is a normalization factor
and m is the frequency decay exponent. Note that, in this
model, the diffuse component is independent of the realization
of the discrete MPCs, while, in contrast, the work in [24]
models the diffuse component as a diffuse tail associated with
each specular component.

It is worth noting that the level of channel diffuseness or
sparseness depends primarily on two factors: the transmis-
sion bandwidth and the environment. In fact, the larger the
transmission bandwidth, the finer the delay resolution at the
receiver, and the sparser the channel is expected to be. On
the other hand, an environment with many scatterers or rough
surfaces, e.g., an indoor scenario or WBANs, is more likely
to give rise to a dense channel, due to the richer interaction
among the MPCs. Dense channels have been observed, e.g.,
in gas stations [23], industrial [34], office [10] and vehicular
environments [25]. We thus expect a dense or hybrid channel
representation to be relevant in these or similar scenarios.

Spatio-temporal scale of variation in the UWB channel
We now consider the spatio-temporal variation of the chan-

nel, due to the relative motion of the scatterers, receiver and
transmitter in the environment. For ease of exposition, we
consider movement of the receiver only. Ignoring Doppler
effects, which are left for future investigations, the channel
time-variations affect the amount of side-information available
at the receiver for the purpose of channel estimation, as
discussed in Section III-B.

From the discrete baseband model (2), the phase2 varia-
tion of the lth MPC over a time-interval ∆t is given by

2Note that "phase" is a narrow-band concept and can be used only as an
approximation in UWB systems, in particular when the lower band edge is
at f = 0.

∆φl , 2π c0λ0
|τl(t+ ∆t)− τl(t)|, where λ0 is the wavelength

at the center frequency, and c0 is the free space speed of light.
Therefore, a significant phase variation (e.g., by more than
π
2 ) occurs when ∆φl >

π
2 . This quantity corresponds, in the

spatial domain, to a wavelength or a fraction of it. Therefore,
phase changes are expected to occur on a very small spatio-
temporal scale.

Similarly, the variation of the MPC delay, over the same
time-interval ∆t, is given by ∆τl , |τl(t+ ∆t)− τl(t)|.
Hence, a significant variation (e.g., by more than one channel
delay bin, 1

W ) occurs when ∆τl >
1
W , i.e., on a spatial scale

of c0
W or roughly a number of wavelengths in the range [0.5, 5],

depending on the value of the transmission bandwidth W ,
relative to the center frequency f0.

Finally, significant variations of the MPC amplitude al(t),
due to shadowing effects, typically correspond to a spatial
scale of several wavelengths.

Note that, due to mutual interference of the unresolvable
MPCs contributing to the same tap location, changes in the
amplitude of the diffuse components arise over the same
spatio-temporal scale as the phase changes of the MPCs
(small scale fading). On the other hand, the amplitude of the
resolvable MPCs vary over a much larger spatio-temporal scale
(large scale fading).

Remark 1. It is worth noting that the side-lobes of the sinc
function in (2) introduce faster time-variations of the amplitude
of the resolvable MPCs than the large-scale fading, over the
same spatio-temporal scale as the delay variations, and account
for the leakage of the MPC energy over nearby channel taps.
However, this phenomenon is limited, and can be quantified
as follows. The most severe leakage occurs when the MPC
arrives exactly in the middle between two sampling times,
in which case most of the energy (2sinc(0.5)2 ' 80%) is
spread equally between two nearby taps (each with amplitude
1− sinc(0.5) ' 37% smaller than in the no leakage scenario,
where the MPC delay is exactly an integer number of the
sampling period), and the remaining 20% is leaked among
the nearby taps. Therefore, the side-lobes of the sinc function
account for at most a 37% variation of the amplitude of the
main MPC tap in (2). The problem of MPCs falling in between
two sample points can be modeled as a basis mismatch [35].

In the next section, we present the observation and the
channel models. In particular, in Section III-A we present the
HSD model, which represents a simplification with respect
to other models presented in the literature, e.g., (4), but at
the same time it captures the main propagation phenomena
of the UWB channel discussed in this section: resolvable
MPCs, modeled by the sparse vector (3), unresolvable MPCs,
diffuse scattering and frequency distortion, modeled by a
random, dense vector. Also, based on the analysis of the spatio-
temporal scale of variation in the UWB channel, in Section
III-B we discuss different practical scenarios, differing in the
side-information available at the receiver for the purpose of
channel estimation, which enables more accurate estimation
techniques.



4

III. SYSTEM MODEL

We consider a single-user UWB system. The source trans-
mits a sequence of M = N +L− 1 pilot symbols, x(k), k =
−(L − 1), . . . , N − 1, over a channel h(l), l = 0, . . . , L − 1
with known delay spread L ≥ 1. The received, discrete time,
baseband signal over the corresponding observation interval of
duration N is given by

y(k) =

L−1∑
l=0

h(l)x(k − l) + w(k), k = 0, . . . , N − 1, (5)

where w(k) ∈ CN (0, σ2
w) is i.i.d. noise.

If we collect the N received samples in the column vector
y = [y(0), y(1), . . . , y(N − 1)]

T , we have the following
matrix representation:

y = Xh + w. (6)

Above, X ∈ CN×L is the N × L Toeplitz
matrix associated with the pilot sequence, having
the vector of the transmitted pilot sequence
[x(−k), x(−k + 1), . . . , x(−k +N − 1)]

T
, k = 0, . . . , L− 1,

as its kth column, h = [h(0), h(1), . . . , h(L− 1)]
T ∈ CL

is the column vector of channel coefficients, and
w = [w(0), w(1), . . . , w(N − 1)]

T ∼ CN (0, σ2
wIN ) is

the noise vector.
We assume X∗X � 0, so that the LS estimate hLS =

(X∗X)
−1

X∗y is a sufficient statistic [36] for the channel.
Therefore, without loss of generality for the purpose of chan-
nel estimation, we consider the observation model

hLS =(X∗X)
−1

X∗y=h+(X∗X)
−1

X∗w=h+
√

S
−1

n, (7)

where we have defined the SNR matrix S = X∗X
σ2
w
� 0, and

n = 1
σ2
w

√
S
−1

X∗w ∼ CN (0, IL). With a slight abuse of no-
tation, we will refer to the LS estimate hLS as the "observed"
sequence. Moreover, we assume that the pilot sequence is
orthogonal, so that S is a diagonal matrix. Then, the noise
vector

√
S
−1

n in the LS estimate has independent entries. This
assumption greatly simplifies the channel estimation problem.
In fact, when the channel has independent entries over the
delay dimension (this is the case for the HSD model we
develop), a per-tap estimation approach, rather than a joint
one, is optimal. The case with non-orthogonal pilot sequences
is considered in Part II of the paper.

A. HSD Channel Model

The channel h follows the HSD model developed in [30],

h = as � cs + hd, (8)

where the terms as � cs ∈ CL and hd ∈ CL represent the
sparse3 and the diffuse components, respectively.

In particular, as ∈ {0, 1}L is the sparsity pattern, which is
equal to one in the positions of the specular MPCs, and equal
to zero otherwise; its entries are drawn i.i.d. from B(q), where

3In the following, we use the terms sparse, specular and resolvable MPCs
interchangeably. In fact, the physical specular components (resolvable MPCs)
of the channel can be modeled and represented by a sparse vector (3).

q � 1 so as to enforce sparsity. In the sequel, we refer to the
non-zero entries of as�cs ∈ CL as active sparse components.

The vector of sparse coefficients, cs ∈ CL, is drawn from
the continuous probability distribution p(cs), with second
order moment E [csc

∗
s] = Λs, where Λs is a diagonal matrix

with entries given by the PDP Λs(k, k) = Ps(k), k =
0, . . . , L− 1.4

Finally, we use the Rayleigh fading assumption for the
diffuse component, hd ∼ CN (0,Λd), where Λd is diagonal,
with entries given by the PDP Λd(k, k) = Pd(k), k =
0, . . . , L− 1.

Remark 2. The Bernoulli model for as can be interpreted as
a discretized Saleh-Valenzuela model [37]. In fact, according
to the latter, the inter-arrival times of the specular components
have an exponential distribution, whose discrete counterpart is
the geometric distribution. This in turn can be interpreted as
the inter-arrival time of two consecutive "1"s in a sequence of
i.i.d. Bernoulli draws.

Remark 3. In general, the Rayleigh fading assumption does
not hold for the distribution of the sparse coefficients p(cs)
(unlike the diffuse ones), since only very few propagation
paths contribute to an active tap in the sparse channel, thus
limiting the validity of the central limit theorem. Channel
measurement campaigns have shown that the large scale
fading, affecting the amplitude of the entries of cs, can be
modeled by a log-normal distribution [23]. However, for the
sake of analytical tractability, in the following we either treat
cs as a deterministic unknown vector, when its second order
moment Λs is unknown, or we treat it using the Gaussian
approximation, when knowledge of Λs is available.

Remark 4. Note that in [23] the amplitudes of the diffuse
coefficients are modeled by a Weibull distribution, with a delay
dependent shape parameter σ < 2, and approach the Rayleigh
fading distribution (σ = 2) only for large excess delays. This
distribution represents a fading worse than Rayleigh. However,
we adopt the Rayleigh fading approximation for simplicity
and tractability. Also, the side-lobes of the sinc function
in (2) introduce correlation in the delay domain, which is
not accounted for under the Rayleigh fading model. This is
a common assumption in standard cellular channel models,
where measurements have well established the independence
of fading on different taps [38].

Despite its simplicity, we argue that the HSD model is able
to capture the main UWB propagation mechanisms discussed
in Section II. In fact, the resolvable specular components and
the fine delay resolution are appropriately modeled by the
sparse vector as � cs, whereas diffuse scattering, multipath
interference and the frequency distortion are approximated by
the diffuse component hd. This is confirmed by simulation
results in Part II of the paper, where we validate the proposed
HSD model based on a realistic channel emulator [24].

4It is worth noting that this is not a PDP in the traditional sense, but rather
represents the power profile of the active sparse components, as a function of
the delay.
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B. Channel Estimation scenarios

The HSD model is described by a number of deterministic
parameters, namely, the sparsity level q, the PDP of the diffuse
component Pd and the PDP of the sparse component Ps.
Accurate knowledge about some or all of these parameters
may not be available at the receiver, depending on a number of
factors, most importantly the length of the interval over which
the channel is observed, and the dynamics of the environment.

Let
{

h(j) = a
(j)
s � c

(j)
s + h

(j)
d , j = 0, . . . , Nch − 1

}
be a

sequence of Nch channel realizations, spaced apart in time by
∆t, corresponding to a spatial separation by ' λ0, resulting
from the relative motion of the receiver with respect to the
scatterers and the transmitter position. Under this assumption,
the samples of the diffuse component

{
h

(j)
d , j ≥ 0

}
can be

approximated as drawn independently from CN (0,Λd), due
to multipath interference (Section II).

On the other hand, the positions of the active sparse co-
efficients

{
a

(j)
s , j = 0, . . . , Nch − 1

}
exhibit correlation with

each other. In fact, as pointed out in Section II, a variation of
the delay associated with a specular MPC by one channel delay
bin occurs over a spatial scale of the order of c0

Wλ0
∈ [0.5, 5]

wavelengths. Therefore, the positions of the "1"s observed in
subsequent realizations of the sparsity pattern a

(j)
s are bound

not to vary appreciably over a large spatial scale, relative to
the wavelength.

A similar consideration holds for the amplitudes of the
specular components (i.e., the active sparse components in the
vector a

(j)
s � c

(j)
s ), which vary according to the large scale

fading, i.e., over a relatively large spatial scale, compared to
the rate of variation of the diffuse component (however, the
side-lobes of the sinc function account for a 37% variation in
the amplitude on the same spatial scale as the delay variations,
as discussed in Remark 1 of Section II).

This correlation structure, i.e., slow amplitude and delay
variations, may be exploited to enhance the estimation ac-
curacy of the sparse component a

(j)
s � c

(j)
s , by tracking the

position and amplitude of the resolvable MPCs over subse-
quent observation windows. However, in this work we consider
estimation of a

(j)
s � c

(j)
s based on either only one channel

realization, or the statistics of the ensemble of realizations
that ignores the information about the temporal sequence in
which the realizations occur.

We consider three different physical scenarios, dictated by
the length of the observation window Nch.

C. Single Snapshot of the channel

If a very short observation window is available (Nch = 1, or
less than a wavelength in the spatial domain), averaging over
the small scale and the large scale fading is not possible. Un-
der this assumption, statistical information about the channel
cannot be reliably collected, and the channel can reasonably be
considered a deterministic and unknown vector. In this case,
an LS estimate hLS may be employed. In the absence of prior
information about the channel, this is a robust approach for
channel estimation.

TABLE I
ESTIMATION SCENARIOS CONSIDERED.

Scenario sparsity q PDP Λs PDP Λd

S0 Single snapshot (unstructured) unknown unknown unknown
S1 Single snapshot unknown unknown known

(PDP structure exploited)
S2 Avg. over Small scale fading known unknown known
S3 Avg. over Small&Large scale fading known known known

Alternatively, we may exploit further structure of the chan-
nel, e.g., exponential PDP of the diffuse component, to average
the fading over the delay dimension rather than over time. As
shown in Section V, under this assumption, an accurate PDP
estimate of h

(j)
d is possible even in the extreme case Nch = 1.

We may then assume that the PDP of h
(j)
d is known at the

receiver, whereas the vector c
(j)
s is modeled as deterministic

and unknown.
As to the sparsity level q, letting Nsc be the number of

resolvable scatterers, we have q ' Nsc

L . This number is not
expected to vary appreciably over a relatively long observation
interval, and can be estimated by counting the number of
resolvable MPCs which can be distinguished from the noise
plus diffuse background. However, an accurate estimate of Nsc

is obtained by averaging the small-scale fading and the noise
over subsequent channel realizations. Hence, we model q as a
deterministic and unknown parameter.

D. Averaging over the Small scale fading

When a larger observation window is available (correspond-
ing, in the spatial domain, to a few wavelengths, Nch > 1),
averaging over the small scale fading (amplitude and phase
of the diffuse component) may be possible. In this case, the
PDP of h

(j)
d can be estimated accurately by averaging over

subsequent realizations of the fading process.
In this scenario, we assume that Λd is perfectly known at

the receiver. This knowledge can be exploited by performing
a Minimum MSE (MMSE) estimate of h

(j)
d , which achieves

a better accuracy than LS. On the other hand, due to the
inability to average over the large-scale fading, which affects
the variation of the amplitude of the resolvable MPCs, c

(j)
s is

treated as deterministic and unknown.

E. Averaging over the Small scale and the Large scale fading

Finally, when the observation interval spans several wave-
lengths (Nch � 1), averaging over the large scale, other than
the small scale fading, is possible.

In this scenario, we assume that Λd, Λs and q are known
at the receiver. This information can be exploited to compute
a linear-MMSE estimate of c

(j)
s and h

(j)
d , thus enhancing the

estimation accuracy over an unstructured estimate (e.g., LS).
The main scenarios of interest, and the side information at

the receiver, are listed in Table I. Scenario S0 will not be
further considered, since the channel is estimated via LS. In
the next section, we design channel estimators for the other
scenarios.
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IV. HYBRID SPARSE/DIFFUSE CHANNEL ESTIMATION

In this section, we design channel estimation strategies
based on the HSD model. In particular, for scenario S3, we
propose an MMSE estimator in Section IV-A. For scenarios
S1 and S2, we propose the GMMSE and GThres estimators
in Section IV-B.

A. MMSE Estimator

When Λd, Λs and q are known, we can devise an MMSE es-
timator. By exploiting the orthogonality of the pilot sequence,
we can use a per-tap estimation approach. The MMSE estimate
of the kth delay bin is given by the posterior mean of the
channel, given the observed channel sample hLS(k) [36],

ĥMMSE(k)=Pr(as(k)=0|hLS(k))E [hd(k)|hLS(k),as(k)=0]

+ Pr(as(k)=1|hLS(k))E [cs(k) + hd(k)|hLS(k),as(k)=1] ,
(9)

where we have conditioned on the realization of the sparsity
bit as(k). In particular, the sum is over the posterior mean
under the two hypotheses as(k) = 1 and as(k) = 0,
weighted by their posterior distribution Pr (as(k) = 1|hLS(k))
and Pr (as(k) = 0|hLS(k)), respectively.

In order to compute (9), we use the circular Gaus-
sian approximation for cs(k).5 Under this assumption,
hLS(k)|{as(k) = a,h(k)} ∼ CN (h(k), 1/Sk,k), whereas the
channel sample h(k), conditioned on as(k) = a, is distributed
as h(k)|as(k) = a ∼ CN (0,as(k)Ps(k) + Pd(k)). Then,
h(k)|{hLS(k),as(k) = a} ∼ CN (m(a),Σ), with posterior
mean m(a) = E [h(k)|hLS(k),as(k) = a] given by

m(a) =
aPs(k) + Pd(k)

1/Sk,k + aPs(k) + Pd(k)
hLS(k). (10)

From (9), we finally obtain

ĥMMSE(k) = Pr (as(k) = 0|hLS(k))
Sk,kPd(k)

1 + Sk,kPd(k)
hLS(k)

+ Pr (as(k) = 1|hLS(k))
Sk,k (Ps(k) + Pd(k))

1 + Sk,k (Ps(k) + Pd(k))
hLS(k),

where, from Bayes’ rule and as(k) ∼ B(q), letting
Qk =

Sk,kPs(k)
1+Sk,kPd(k) , we have

Pr (as(k) = 1|hLS(k))=

(
1+

1− q
q

p (hLS(k)|as(k) = 0)

p (hLS(k)|as(k) = 1)

)−1

=
1

1 + 1−q
q (1 + Qk) exp

{
− Qk

1+Qk

Sk,k|hLS(k)|2
1+Sk,kPd(k)

} . (11)

5As discussed in Remark 3 in Section III, the large scale fading is
commonly modeled by a log-normal prior; however, due to the difficulty
in handling it, the Rayleigh fading approximation is used, thus leading to
the classical linear MMSE estimator. We have numerically evaluated the
performance loss incurred by using the linear MMSE estimator over an
MMSE estimator based on the log-normal prior, for the simple scalar model
y = cs + n, where cs = eνs+iθs , with νs ∼ N (0, 1) and θs uniform in
[0, 2π], is the channel coefficient with log-normal amplitude, n ∼ CN (0, σ2

w)
is the noise; we found that the performance loss is at most 1.67 dB, at 0 dB
SNR level.

B. Generalized MMSE (GMMSE) and Generalized Thresh-
olding (GThres) Estimators

In this section, we develop estimators for scenarios S1 and
S2. In particular, Λd is assumed to be known at the receiver,
whereas cs is treated as a deterministic and unknown vector.
The case where Λd is unknown and is estimated from the
observed sequence is treated in Section V.

For generality, we assume that the sparsity level q is
unknown, and an estimate q̃ of q, which might be different
from the real q, is used in the estimation phase. This choice
represents a generalization with respect to [30], where the
true sparsity level q is used. We will show by simulation, and
by analysis in Part II of the paper, that assuming a sparsity
level q̃ < q often improves the estimation accuracy, thus
implying that knowledge of this parameter is not crucial to
the performance of the estimators.

We proceed as follows. cs is estimated by Maximum
Likelihood (ML). Then, the estimate ĉs is used to perform
either an MMSE or a Maximum A Posteriori (MAP) estimate
of the sparsity pattern as, denoted by âs, assuming the prior
as ∼ B(q̃)L. We refer to these estimators as the GMMSE
and GThres estimators, respectively. Finally, the diffuse com-
ponent hd is estimated via MMSE, based on the residual
estimation error hLS − âs � ĉs.

The ML estimate of cs(k) is given by

ĉs(k) = arg min
cs(k)∈C

{− ln p (hLS(k)|cs(k),as(k) = 1)}

= hLS(k), (12)

where we have used the fact that, when conditioned
on as(k) = 0, the observation hLS(k) does not
depend on cs(k), and hLS(k)| {cs(k),as(k) = 1} ∼
CN

(
cs(k), [Sk,k]

−1
+ Pd(k)

)
. We thus obtain ĉs = hLS.

Using the estimate ĉs(k) = hLS(k) and conditioning on
as(k) = a, a ∈ {0, 1}, the MMSE estimate of the diffuse
component hd(k) is given by

ĥ
(a)
d (k) = E [hd(k)|hLS(k), ĉs(k), âs(k) = a]

=
Sk,kPd(k)

1 + Sk,kPd(k)
(1− a) hLS(k). (13)

Finally, by combining the estimates âs, ĉs and ĥ
(a)
d , the

overall HSD estimate is given by

ĥ(k)= âs(k)hLS(k)+(1− âs(k))
Sk,kPd(k)

1+Sk,kPd(k)
hLS(k). (14)

We now develop the MMSE and MAP estimates of as(k).
1) Generalized MMSE Estimator:

The MMSE estimate of the sparsity bit as(k) is given by

â(GMMSE)
s (k) = E [as(k)|hLS(k), ĉs(k)]

= Pr (as(k) = 1|hLS(k), ĉs(k)) . (15)

Using Bayes’ rule, ĉs(k) = hLS(k), and assuming as(k) ∼
B(q̃), we have

â(GMMSE)
s (k) =

1

1 + eα exp
{
−Sk,k|hLS(k)|2

1+Sk,kPd(k)

} , (16)

where we have defined α = ln
(

1−q̃
q̃

)
.
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2) Generalized Thresholding Estimator:
Using Bayes’ rule and the ML estimate ĉs(k) = hLS(k), the
MAP estimate of as is given by

â(GThres)
s (k) = arg max

a∈{0,1}
{ln Pr (as(k) = a|hLS(k), ĉs(k))}

= arg min
a∈{0,1}

{
(1− a)

Sk,k |hLS(k)|2

1 + Sk,kPd(k)
+ a ln

(
1− q̃
q̃

)}
= I

(
|hLS(k)|2 ≥ α (1/Sk,k + Pd(k))

)
. (17)

This solution consists in a thresholding of the LS estimate,
hence the name Generalized Thresholding estimator, where
the diffuse component represents noise for the estimation
of the sparse coefficients. For this reason, the threshold is
proportional, by a factor α, to the sum of the noise strength
1/Sk,k and the power of the diffuse component Pd(k).

It is worth noting that, if α ≤ 0 (i.e., q̃ ≥ 1
2 ), then

â
(GThres)
s (k) = 1, and the GThres estimator trivially reduces

to the LS solution.

V. STRUCTURED PDP ESTIMATION OF THE DIFFUSE
COMPONENT

In the derivation of the GMMSE and GThres estimators
in the previous section, we have assumed that the PDP of
the diffuse component hd is perfectly known at the receiver.
However, in a practical system, this is unknown, and therefore
needs to be estimated.

Herein, we develop a structured estimate of the PDP Pd,
when the observation interval is too short to allow time-
averaging over the small scale fading. By exploiting prior
information about the structure of the PDP, we can average the
small scale fading over the delay dimension, rather than over
subsequent realizations of the fading process, thus enhancing
the estimation accuracy.

We assume an exponential PDP model [23], [38], [39]
Pd(k) = βe−ωk, k = 0, . . . , L−1, where the deterministic,
unknown parameters β ≥ 0 and ω ≥ 0 represent the relative
power and the decay rate of the PDP, respectively. We derive
an ML estimate of these parameters, using the EM algorithm
(the general EM framework is presented in, e.g., [40]). For
simplicity, we assume a single channel snapshot. However, the
following derivation can be extended to include a sequence of
channel realizations. Moreover, we treat the vector cs as a
deterministic unknown parameter, and we assume a sparsity
level q̃ (possibly, 6= q), which is consistent with the design
choice of the GMMSE and GThres estimators.

Let the HSD channel and the observed sequence be given
by (8) and (7), respectively. From (8), if as(k) = 1, then
hLS(k) = cs(k) + hd(k) +

√
Sk,k

−1
n(k). In this case, since

cs(k) is a deterministic, unknown parameter, the observed
sample hLS(k) does not provide statistical information to
estimate the diffuse component (hence, its power). In fact, the
ML estimate of cs(k) is ĉs(k) = hLS(k) (12). The estimated
contribution from the noise and the diffuse component is then
hLS(k)− ĉs(k) = 0, and the estimate of hd(k), given by (13),
is forced to zero. Therefore, the observations corresponding
to the active sparse components should be neglected in the
estimation process.

Conversely, all the statistical information to estimate the
PDP parameters ω and β is contained in the vector (1−as)�
hLS = (1 − as) � (hd +

√
S
−1

n), which is obtained by
zeroing the contribution from the active sparse components.
Unfortunately, as is unknown in advance, hence it needs to
be estimated from the observed sequence.

In employing the EM algorithm to estimate the PDP pa-
rameters β and ω, we assume as and (1 − as) � hd as the
hidden variables. Moreover, we discard the contribution of
the active sparse components to the observed sequence, as
justified above. Then, letting β̂, ω̂ be the current estimates of
the deterministic unknown parameters β and ω, respectively,
in the E-step we compute (18), where, in the last step, we have
defined the posterior probability of an active sparse component

q̂post(k) = Pr
(
as(k) = 1|hLS(k), β̂, ω̂, ĉs(k) = hLS(k)

)
=

1

1 + 1−q̃
q̃ exp

{
−Sk,k|hLS(k)|2

1+Sk,kβ̂e−ω̂k

} . (19)

In particular, in step (a) we have expressed the likelihood
function in terms of its conditional probabilities. Moreover,
we have used that fact that the term (1 − as) � hLS = (1 −
as) � (hd +

√
S
−1

n) is independent of the PDP parameters
β, ω, when conditioned on (1−as)�hd and as, and the prior
distribution of as is independent of β, ω. In step (b), we have
neglected the terms which are independent of the optimization
parameters β, ω. In step (c), the expectation is first conditioned
on as = x, and then averaged over the posterior probability
of as ∈ {0, 1}L. The conditional expectation of |hd(k)|2 is
given by

E
[
|hd(k)|2

∣∣∣hLS(k),as(k) = 0, β̂, ω̂
]

(20)

=
P̂d(k)2

(P̂d(k) + 1/Sk,k)2
|hLS(k)|2 +

P̂d(k)

1 + P̂d(k)Sk,k
,

where P̂d(k) = β̂e−ω̂k is the current estimate of the prior
variance of hd(k).

In the M-step, the term L(β, ω; β̂, ω̂) is minimized with
respect to the optimization parameters β, ω. We obtain{
β̃, ω̃

}
= arg min
β≥0,ω≥0

L(β, ω; β̂, ω̂) = arg min
β≥0,ω≥0

R(β, ω; β̂, ω̂)

= arg min
β≥0,ω≥0

L−1∑
k=0

(1− q̂post(k)) ln
(
βe−ωk

)
(21)

+

L−1∑
k=0

(1− q̂post(k))
E
[
|hd(k)|2

∣∣∣hLS(k),as(k) = 0, β̂, ω̂
]

βe−ωk
.

By defining, for k = 0, . . . , L− 1,
Ak =

L(1−q̂post(k))E[ |hd(k)|2|hLS(k),as(k)=0,β̂,ω̂]∑L−1
p=0 (1−q̂post(p))

,

Z =
∑L−1

p=0 p(1−q̂post(p))∑L−1
p=0 (1−q̂post(p))

,
(22)

the M-step (21) is equivalent to{
β̃, ω̃

}
= arg min

β≥0,ω≥0
lnβ − ωZ +

1

βL

L−1∑
k=0

Ake
ωk. (23)
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L(β, ω; β̂, ω̂) ,− E
[

ln p ( (1− as)� hLS, (1− as)� hd,as|β, ω)|hLS, β̂, ω̂
]

(18)

(a)
= − E

[
ln p ( (1− as)� hLS| (1− as)� hd,as)|hLS, β̂, ω̂

]
− E

[
ln p ( (1− as)� hd|as, β, ω)|hLS, β̂, ω̂

]
− E

[
ln p (as)|hLS, β̂, ω̂

]
(b)
∝ −E

[
ln p ( (1− as)� hd|as, β, ω)|hLS, β̂, ω̂

]
(c)
= −

∑
x∈{0,1}L

Pr
(

as = x|hLS, β̂, ω̂, ĉs = hLS

)
E
[

ln p ( (1− as)� hd|as = x, β, ω)|hLS,as = x, β̂, ω̂
]

=

L−1∑
k=0

(1− q̂post(k))

ln
(
βe−ωk

)
+

E
[
|hd(k)|2

∣∣∣hLS(k),as(k) = 0, β̂, ω̂
]

βe−ωk

 , R(β, ω; β̂, ω̂)

We have the following theorem, whose proof is provided in
the Appendix.

Theorem 1. There is a unique solution
{
β̃, ω̃

}
to

{
β̃, ω̃

}
= arg min

β≥0,ω≥0
lnβ − ωZ +

1

βL

L−1∑
k=0

Ake
ωk. (24)

If
∑L−1
k=0 (Z − k)Ak > 0, then ω̃ is the unique solution in

(0,+∞) of

L−1∑
k=0

(Z − k)Ake
ω̃k = 0. (25)

Otherwise, ω̃ = 0. In both cases, β̃ = 1
L

∑L−1
k=0 Ake

ω̃k.

Note that, when
∑L−1
k=0 (Z − k)Ak > 0, the solution is

a zero of a Lth order polynomial, therefore we must recur
to approximate solutions. Since the solution we seek satisfies
e−ω̃ ∈ (0, 1], and we have proved that it is unique, we recur
to the bisection method [41] to determine an approximate zero
x̃ = e−ω̃ of (25).

Finally, the overall EM algorithm consists in the iterations
of the E-step (19), (22) and the M-step (23). The algorithm
may be initialized by neglecting the noise and the sparse
component, i.e., assuming Sk,k → +∞ and q̃ = 0 in the
first stage. In this case, we have q̂post(k) = 0,∀k in (19) and
the parameters of the E-step (22) are given by

{
Ak = |hLS(k)|2 , k = 0, . . . , L− 1
Z = L−1

2 .
(26)

It is worth noting that, if we had assumed the diffuse
component hd, rather than (1−as)�hd, as the hidden variable,
and we had used all the observed sequence hLS to estimate
the unknown PDP parameters instead of (1−as)�hLS, then

in the M-step we would have{
β̃, ω̃

}
= arg min

β≥0,ω≥0

L−1∑
k=0

(1− q̂post(k)) ln
(
βe−ωk

)
(27)

+

L−1∑
k=0

(1− q̂post(k))
E
[
|hd(k)|2

∣∣∣hLS(k),as(k) = 0, β̂, ω̂
]

βe−ωk

+

L−1∑
k=0

q̂post(k)

ln
(
βe−ωk

)
+

β̂e−ω̂k

βe−ωk
(

1 + Sk,kβ̂e−ω̂k
)
 ,

where we have used the fact that, since ĉs = hLS,

E
[
|hd(k)|2

∣∣∣hLS(k), ĉs(k),as(k)=1, β̂, ω̂
]
=

β̂e−ω̂k

1 + Sk,kβ̂e−ω̂k
.

By comparing this expression with (21), we note one addi-
tional term. In particular, the observations associated with high
probability q̂post(k) → 1 with an active sparse component
give a significant contribution to the log-likelihood function.
However, these observations do not provide information about
the diffuse component hd, since cs is a deterministic, unknown
vector. Conversely, in (21), these observations yield a negligi-
ble contribution.

Choice of the sparsity level q̃

We next discuss the choice of the parameter q̃ used to
estimate the parameters β, ω. Since the EM algorithm solves
the ML problem [40], we consider the general problem of
maximizing the likelihood function. Assuming the sparsity
level q̃, the ML estimate of β, ω and cs is defined as

{β̂, ω̂, ĉs} = arg max
β≥0,ω≥0,cs

p(hLS|β, ω, cs)

= arg max
β≥0,ω≥0,cs

−
L−1∑
k=0

ln (1/Sk,k + Pd(k))

+

L−1∑
k=0

ln

(
q̃ exp

{
−|hLS(k)− cs(k)|2

1/Sk,k + Pd(k)

}

+(1− q̃) exp

{
− |hLS(k)|2

1/Sk,k + Pd(k)

})
,

where we have used the fact that hLS(k)|as(k) = a ∼
CN (acs(k),Pd(k) + 1/Sk,k) and Pd(k) = βe−ωk. By
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maximizing over cs, we obtain ĉs = hLS. Then, letting
tk(Pd(k)) = |hLS(k)|2

1/Sk,k+Pd(k) , s(q̃, t) = ln
(
t+ 1−q̃

q̃ te−t
)

and

F(q̃, β, ω) =
∑L−1
k=0 s(q̃, tk(Pd(k))), we obtain

{β̂, ω̂}=arg max
β≥0,ω≥0

L−1∑
k=0

[
ln tk(Pd(k))+ln

(
1+

1− q̃
q̃

e−tk(Pd(k))

)]

= arg max
β≥0,ω≥0

L−1∑
k=0

s(q̃, tk(Pd(k))) = arg max
β≥0,ω≥0

F(q̃, β, ω),

where we have added the term
∑L−1
k=0 ln(|hLS(k)|2)− L ln q̃,

which does not affect the maximization.
Consider a given pair of parameters (β, ω), and let

s′(q̃, t) ,
ds(q̃, t)

dt
=
q̃ − (1− q̃)e−t(t− 1)

q̃t+ (1− q̃)te−t
, (28)

F ′β(q̃, β, ω) ,
dF(q̃, β, ω)

dβ
=

L−1∑
k=0

s′(q̃, tk(Pd(k)))
dtk(Pd(k))

dβ
.

Similarly, we define F ′ω(q̃, β, ω) as the derivative with respect
to ω. Note that, if F ′β(q̃, β, ω) > 0 (< 0), then there is
an incentive to augment (diminish) β so as to increase the
log-likelihood function F(q̃, β, ω) (the same consideration
holds for F ′ω(q̃, β, ω)). We now prove that this derivative is a
decreasing function of q̃, so that, the larger q̃, the smaller the
incentive to increase β (and, possibly, the larger the incentive
to decrease it, if the derivative becomes negative). In fact,

ds′(q̃, t)
dq̃

=
1

q̃2
exp{−2s(q̃, t)}t2e−t > 0,

dtk(Pd(k))

dβ
= − 1

β
tk(Pd(k))

Pd(k)

1/Sk,k + Pd(k)
< 0, (29)

and therefore

dF ′β(q̃, β, ω)

dq̃
=

L−1∑
k=0

ds′(q̃, tk(Pd(k)))

dq̃

dtk(Pd(k))

dβ
< 0.

Similarly, we can prove that F ′ω(q̃, β, ω) is an increasing
function of q̃, so that, the larger q̃, the smaller the incentive to
decrease ω (and, possibly, the larger the incentive to increase
it, if the derivative becomes negative).

Moreover, note that, if q̃ ≥ 1
1+e2 ' 0.12, then we have

e−t(t−1) ≤ e−2 ≤ q̃
1−q̃ (since the left hand side is maximized

for t = 2), which implies s′(q̃, t) ≥ 0,∀t. We conclude that,
when q̃ ≥ 1

1+e2 , the derivatives F ′β(q̃, β, ω) < 0, ∀β ≥ 0, ω ≥
0 and F ′ω(q̃, β, ω) > 0, ∀β ≥ 0, ω ≥ 0. Therefore, the ML
estimate of β, ω gives β̂ = 0, ω̂ → +∞, and the PDP estimate
is forced to zero.

Conversely, if we let q̃ → 0+, then the contribution of the
sparse component as � cs is neglected, and the channel is
treated as being purely diffuse.

This analysis proves that the prior sparsity level q̃ ≥ 0.12
should never be used, and suggests the existence of a trade-
off in the optimal algorithm parameter q̃, which is confirmed
by simulation in Section VI: in order not to force the PDP
estimate to zero, q̃ should be "small"; however, in order
to take into account the presence of the sparse component
in the observations, q̃ should not be "too small". A further
investigation on the optimal value of q̃ is left for future work.

VI. SIMULATION RESULTS

In this section, we present the simulation results and eval-
uate the MSE and BER performance achievable with the
above estimation strategies for a channel following the HSD
model. In particular, the HSD model allows us to control
the parameters (e.g., sparsity level q̃, PDP profiles Pd, Ps)
and to evaluate the performance of the estimators developed
in Section IV in an ideal setting, i.e., where the channel
realizations follow exactly the HSD model, based on which
the estimators have been designed. Conversely, in Part II [32],
simulation results are given based on a more realistic channel
model [24], which allows us to evaluate the robustness of the
proposed estimators against deviations from the HSD model.

We define the MSE of the estimator ĥ of the channel h as

MSE =
1

L

L−1∑
k=0

E
[∣∣∣ĥ(k)− h(k)

∣∣∣2] . (30)

In the simulations, the channel h ∈ CL has delay spread
L = 100. The sparsity pattern as ∈ {0, 1}L has i.i.d. Bernoulli
entries with parameter q = 0.1. The vector cs ∈ CL is
drawn from CN (0,Λs), with exponential PDP Λs(k, k) =
Ps(k) = Pse

−ωk, where ω = 0.05. The diffuse component
hd ∈ CL is drawn from CN (0,Λd), with exponential PDP
Λd(k, k) = Pd(k) = βPse

−ωk. Unless otherwise stated, we
use β = 0.01, hence the ratio between the energy of the sparse
and diffuse components is given by [E[h∗shs]/E[h∗dhd]] dB =
10 dB, where hs = as � cs denotes the sparse compo-
nent. The parameter Ps > 0 is a normalization factor, and
is chosen so that the average channel energy is L, i.e.,∑L−1
k=0 E

[
|h(k)|2

]
= Ps

∑L−1
k=0 (β + q)e−ωk = L. We assume

an orthogonal pilot sequence, thus S is diagonal and can be
described as S = S · IL, where S > 0 is the estimation SNR.

We compare the LS estimate, the MMSE estimate (Section
IV-A), and the GMMSE and GThres estimators (Sections
IV-B1 and IV-B2, respectively), for different values of the
assumed sparsity level q̃ ∈ {0.1, 0.01, 0.001}, corresponding
to α = 1−q̃

q̃ ∈ {2.2, 4.6, 6.9}. We also compare these
estimators with a purely sparse and a purely diffuse estimators,
which ignore the diffuse or sparse components, respectively.
Since a per-tap approach is optimal in this case, for the sparse
estimator we choose a variation of the GThres estimator
which assumes no diffuse component (hd = 0).

Note that the MMSE estimator in Section IV-A, by assum-
ing perfect knowledge of q, Λd and Λs, is a lower bound to
the estimation accuracy. This is used primarily as a reference.

Figure 1 plots the MSE of the estimators, assuming perfect
knowledge of Λd, as a function of the average SNR per
channel entry, defined as SE[h∗h]/L. We observe that, using
a more conservative approach, i.e., assuming a Bernoulli prior
q̃ � q, improves the estimation accuracy in the high and
low SNR regimes. In fact, the optimal threshold for the
GThres estimator represents a balance between the proba-
bility of mis-detecting an active sparse component as diffuse
contribution and the probability of false alarm (detecting a
diffuse contribution as active sparse component). A conser-
vative approach, by employing a small threshold, reduces the
false alarm probability (a similar consideration holds for the
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Fig. 1. MSE of the channel estimators, assuming perfect knowledge of the
PDP Pd(k). β = 0.01, q = 0.1

GMMSE estimator). This trend can also be observed in the
medium SNR ranges. However, this property does not hold in
general. To see that, we also plot the accuracy of the diffuse
estimator ĥ(Diff)(k) = SPd(k)

1+SPd(k)hLS(k), which ignores the
sparse component as � cs. This can be interpreted as a limit
case of the GMMSE and GThres estimators, for q̃ → 0,
or equivalently α → +∞. An analytical explanation of this
behavior, based on the MSE analysis of the estimators in the
asymptotic regimes of high and low SNR, follows in Part II of
this paper [32]. Note also that the GMMSE estimator performs
better than the GThres estimator with respect to MSE, for
a given value of q̃. This is a consequence of the fact that
GThres allows only the extreme values â

(GThres)
s (k) ∈ {0, 1},

whereas GMMSE allows a smoother transition between these
two extremes.

In Figure 2, we let vary the ratio between the energies of
the sparse and diffuse components,
E[h∗shs]/E[h∗dhd] = q/β. The SNR per channel entry is
[SE[h∗h]/L] dB = 10 dB. The MSE of the purely sparse
estimator is also plotted in this case. Similarly to Figure 1,
we note that a conservative approach is beneficial from an
MSE perspective. As expected, the sparse estimator performs
worse than the GThres estimator, due to its inability to
exploit the diffuse component of the channel. In particular, it
performs closely to the GThres estimator for small values of
β (i.e., large values of E[h∗shs]/E[h∗dhd]), where the diffuse
component is negligible with respect to the sparse one, and
incurs a performance degradation for large values of β, where
the diffuse component becomes significant. Moreover, as ex-
pected, the only diffuse estimator achieves good performance
for large values of β. However, it performs poorly for small
values of β, where the sparse component yields a significant
contribution. Note that, excluding the MMSE estimator, the
GThres estimator with q̃ = 0.001 achieves the best perfor-
mance over the entire range of values considered, very close
to the MMSE lower bound. This proves that the proposed
methods are robust, and adapt to a wide range of estimation
scenarios, where the channel exhibits either a sparse, diffuse
or hybrid nature (corresponding to large, small and moderate
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Fig. 2. MSE of the channel estimators as a function of β, assuming perfect
knowledge of the PDP of the diffuse component Pd(k). [SE[h∗h]/L] dB =
10dB, q = 0.1

values of E[h∗shs]/E[h∗dhd], respectively).
Figure 3 compares the MSE of the GMMSE estimator, for

the two cases where Λd is perfectly known at the receiver,
and where it is estimated from the observed sequence using
the EM algorithm (Section V), based on only one realization
of the channel. We notice that, in general, there is a small
performance loss due to the unknown Λd, mainly in the low
SNR range and for small values of q̃ (however, no performance
degradation is observed for q̃ = 0.1). This behavior is
explained by the fact that the MMSE estimate of hd in (14) is
more sensitive to errors in the estimation of Λd in the low SNR
than in the high SNR regime. In fact, for high SNR values,
it approaches the LS solution. On the other hand, for small
values of q̃ we have the following. The posterior probability
of the entries of the sparsity pattern as, as a function of the
factor α =

(
1−q̃
q̃

)
, is given by (16) with Sk,k = S. This

is a decreasing function of α (i.e., increasing function of q̃).
As a consequence, the smaller q̃ the more the weight given
to the right-hand term of (14), associated with the MMSE
estimate of hd(k), which is sensitive to errors in the estimate
of Pd(k), compared to the left-hand term, associated with
the LS estimate of cs(k), which is independent of the PDP
estimate. As a consequence, a smaller value of q̃ results in
an overall estimate that is more sensitive to errors in the PDP
estimate of hd. Similar considerations hold for the GThres
estimator.

Figure 4 plots the MSE of PDP estimator of the diffuse
component developed in Section V, for different values of q̃
and of the number of iterations of the EM algorithm, based
on only one channel realization, as a function of the SNR
per diffuse channel entry SE[h∗dhd]/L. In particular, letting
P̂d(k), k = 0, . . . , L − 1 be an estimate of Pd(k) = βe−ωk,
we compute the following MSE metric:

MSEPDP =
1

L

L−1∑
k=0

E
[(

ln P̂d(k)− lnPd(k)
)2
]
. (31)

The performance is compared also with an oracle estimator,
which assumes perfect knowledge of as�cs, thus being able to
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Fig. 3. MSE of the GMMSE estimators, comparison between the cases
where the PDP of the diffuse component is known and estimated from the
data, respectively. β = 0.01, q = 0.1. The two curves of the GMMSE
estimator with q̃ = 0.1 where the PDP is known and estimated overlap.

perfectly remove the interference from the sparse component
(in particular, we use the EM estimator with q̃ = 0). In the
Figure, the MSE floor refers to the ML estimator of β, ω in
the noiseless scenario with no sparse component. It can be
shown that, in this case, the ML estimator is obtained by
setting Ak = |hd(k)|2 and Z = L−1

2 in the E-step (22), and
by solving (24) using the results of Theorem 1. As expected,
the Oracle estimator achieves the best performance, and ap-
proaches the MSE floor in the high SNR. Remarkably, the
EM estimator with q̃ = 0.001 and 300 iterations approaches
the performance of the Oracle estimator, although it cannot
take advantage of prior knowledge of as � cs. This proves
that the proposed method effectively removes the interference
from the sparse component, by discarding the observations
associated, with high probability, to the active sparse com-
ponents. Interestingly, the case q̃ = 0.001 with 20 iterations
incurs a small performance degradation compared to the MSE
achievable after 300 iterations, which becomes negligible for
moderate and large SNR values. On the other hand, when
q̃ = 0 is used, the presence of the sparse component is
neglected and the channel is treated as being purely diffuse.
In this case, a significant performance degradation is incurred.
Finally, we notice that the case q̃ = 0.15 incurs a performance
degradation, compared to the case q̃ = 0.001, which confirms
our analysis in Section V. In fact, we have verified that the
estimate of the PDP parameter ω diverges to +∞ as the EM
algorithm is iterated, so that the PDP estimate is forced to zero
and the overall MSE diverges to +∞.

Finally, in Figure 5 we plot the BER induced by channel
estimation errors, for the case where the PDP of hd is known.
To this end, we define an OFDM-UWB system, employing
Ndft = 512 sub-carriers and a 4-QAM constellation. Our
observation for channel estimation has noise; in contrast, we
assume no noise when evaluating the BER. As a result, the
BER curves reflect the errors induced by channel estimation
versus additive channel noise. In particular, let X(n) be the 4-
QAM symbol transmitted on the nth sub-carrier, and H(n) =
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Fig. 4. MSE of the PDP estimator of hd. β = 0.01, q = 0.1.

∑L−1
l=0 h(n)e

−i2π ln
Ndft be the DFT of the channel. Then, the

received symbol is Y (n) = H(n)X(n). This is equalized
by using the estimate Ĥ(n) of H(n) (using either of the
estimators developed in Section IV), i.e., X̃(n) = H(n)

Ĥ(n)
X(n),

and the decision is based on a minimum distance criterion,
i.e., X̂(n) = minx∈4−QAM |X̃(n)−x|2. Moreover, the BER is
averaged over the "good" sub-carriers only, which are chosen
based on the heuristic carrier selection scheme{

k : |H(k)|2 ≥ λmax
n
|H(n)|2

}
, (32)

where λ ∈ (0, 1) is a threshold value. In particular, λ is
chosen so that 30% of the sub-carriers are classified as "good".
The SNR is referred to the output of an ideal Rake receiver
with perfect channel knowledge, where the estimation noise
is treated as additive Gaussian noise at the receiver. This
is defined as SNRrake = Sh∗h. We notice that GMMSE
estimator with q̃ = 0.001 performs very closely to the
lower bound, represented by the BER induced by the MMSE
estimator, defined in Section IV-A. On the other hand, both
the diffuse and the purely sparse estimators perform poorly,
due to their inability to exploit both the sparse and the diffuse
components jointly.

VII. CONCLUSIONS

In this paper, we have investigated channel estimation
for UWB systems. In particular, we have proposed a novel
sparse/diffuse model for the UWB channel, which is able
to capture the main UWB propagation mechanisms: fine
delay resolution capability, scattering from rough surfaces,
frequency dispersion. We have then identified four scenarios
of interest in practical systems, differing in the amount of
side information available at the receiver for the purpose of
channel estimation, and we have proposed channel estimators
exploiting the channel structure and the side-information to
enhance the estimation accuracy.

Of particular interest is the scenario where the PDP of the
diffuse component is known at the receiver, and the statistics of
the specular component are unknown. This is relevant when
the observation interval is large enough to allow averaging
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Fig. 5. BER induced by channel estimation errors, with known PDP of hd.
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over the small scale fading, but not over the large scale
fading. For this scenario, we have proposed the Generalized
MMSE and Generalized Thresholding Estimators. Moreover,
we have proposed an EM algorithm for the PDP estimation
of the diffuse component, which exploits the exponential
structure of the PDP to average the fading over the channel
delay dimension, rather than over subsequent independent
realizations of the fading process.

We have compared these estimators to the unconstrained LS
estimator, and to conventional purely sparse or diffuse estima-
tors, which, on the other hand, ignore either the diffuse or the
sparse component. The numerical results show that, when the
channel follows the hybrid sparse/diffuse model, the proposed
estimators considerably improve the performance over LS and
conventional sparse or diffuse estimators, from both an MSE
and a BER perspective. Moreover, we have observed that it is
beneficial to be conservative in the estimation of the sparse
component of the channel, i.e., to assume that the sparse
component is sparser than it actually is. In Part II, we develop
an MSE analysis of these estimators, proving this conjecture
in the asymptotic high and low SNR regimes, and we validate
the proposed sparse/diffuse model and estimation strategies
based on a more realistic UWB channel emulator.
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APPENDIX

Proof of Theorem 1 in Section V. Let f(x, β) = lnβ +
Z lnx + 1

βL

∑L−1
k=0 Akx

−k, where we have defined x =

e−ω ∈ (0, 1] in the argument of the minimization in (24).
By minimizing with respect to β ≥ 0, for a fixed x, we have

β̃(x) = arg min
β≥0

{
lnβ +

1

βL

L−1∑
k=0

Akx
−k
}

=
1

L

L−1∑
k=0

Akx
−k.

Substituting into f(x, β), we obtain f(x, β̃(x)) = 1+ln β̃(x)+
Z lnx. We now minimize f(x, β̃(x)) with respect to x ∈
(0, 1]. f(x, β̃(x)) is an increasing function of x ∈ (0, 1] if
and only if

f ′(x, β̃(x)) =
df(x, β̃(x))

dx
=
β̃′(x)

β̃(x)
+
Z

x
> 0, (33)

where β̃′(x) = dβ̃(x)
dx = − 1

L

∑L−1
k=0 kAkx

−(k+1). Equiva-
lently, multiplying both sides by xZ+1β̃(x) > 0, f(x, β̃(x))
is an increasing function of x ∈ (0, 1] if and only if

g(x) , xZ+1β̃(x)f ′(x, β̃(x)) (34)

=
1

L

L−1∑
k=0

Akx
Z−k (Z − k) > 0.

Note that g′(x) = dg(x)
dx = 1

L

∑L−1
k=0 Akx

Z−k−1 (Z − k)
2
>

0, ∀x ∈ (0, 1]. Therefore, g(x) is a continue monotone
increasing function of x. Moreover, since Z < L − 1 from
(22) and limx→0+ xm = +∞ when m < 0, we have
limx→0+ g(x) = −∞. Therefore, if g(1) > 0, or equivalently∑L−1
k=0 (Z − k)Ak > 0, then there exists a unique x̃ ∈ (0, 1)

solution of g(x̃) = 0 such that{
g(x) > 0, ∀x > x̃
g(x) < 0, ∀x < x̃.

(35)

Equivalently, x̃ ∈ (0, 1) is the unique solution of
f ′(x, β̃(x)) = 0 such that{

f ′(x, β̃(x)) > 0, ∀x > x̃

f ′(x, β̃(x)) < 0, ∀x < x̃.
(36)

As a consequence, x̃ is the unique minimizer of f(x), x ∈
(0, 1], and

{
β̃(x̃), ω̃ = − ln x̃

}
uniquely minimizes (24).

Conversely, if g(1) ≤ 0, i.e.,
∑L−1
k=0 (Z − k)Ak ≤ 0, then

g(x) ≤ 0, ∀x ∈ (0, 1]. This is equivalent to f ′(x, β̃(x)) ≤
0, ∀x ∈ (0, 1]. As a consequence, 1 is the unique minimizer
of f(x, β̃(x)), and

{
β̃(1), ω̃ = 0

}
uniquely minimizes (24).
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